
 

429

 

ISSN 0016-7029, Geochemistry International, 2008, Vol. 46, No. 5, pp. 429–447. © Pleiades Publishing, Ltd., 2008.
Original Russian Text © A.A. Ariskin, V. B. Polyakov, 2008, published in Geokhimiya, 2008, No. 5, pp. 467–486.

 

INTRODUCTION

Progress in modern techniques for genetic interpre-
tations of magmatic rocks is related to the development
of computer models for phase equilibria in silicate sys-
tems consisting of a melt and crystals. The calibration
basis of such models is provided by experimental data
on the melting of rocks and their synthetic analogues,
and mathematical basis of the models is systems of
empirical equations describing distributions of compo-
nents between solid phases and melts. Assuming ther-
modynamic equilibrium between the phases, these
equations can be written in the form of dependences of
the free energy of the system, or the distribution con-
stants, on the composition and 

 

P

 

-

 

T

 

 parameters. This
makes it possible to simulate the successive melting and
crystallization of natural silicate melts using methods of
direct [1] or “implicit” [2] minimization of the thermo-
dynamic potentials at a specified bulk composition of the
system. The MELTS [3, 4] and COMAGMAT [5, 6]

software program packages are now widely applied in
magmatic petrology to conduct a diversity of genetic
reconstructions (see reviews [7–9]). At the same time,
some disadvantages of these programs, which became
obvious at the turn of this century, cannot be eliminated
by varying some input parameters. These problems
involve the settling of oxide phases, simulation of peri-
tectic relations (first of all, for 

 

Ol

 

 and 

 

Opx

 

), the effect of
volatile components, and the simulation of high-pres-
sure equilibria. This is partly accoun-ted for by the
ambiguity of experimental data and difficulties in mak-
ing them mutually consistent, but the main problem is
still the choice of components and thermodynamic
model for the magmatic melt. Here some avenues were
proposed for developing the ion–polymer theory for the
structure of silicate melts with regard for the tendencies
in the distribution of polymer components of various
sizes depending on the SiO

 

2

 

 concentration. The effect
of other network-forming components (such as Al and
Ti) still cannot be taken into account.
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Abstract

 

—A new statistical model is proposed for the molecular mass distributions (MMD) of polymerized
anions in silicate melts. The model is based on the known distribution of 

 

Q

 

n

 

 species in the MeO

 

–

 

Me

 

2

 

O

 

–

 

SiO

 

2

 

system. In this model, chain and ring complexes are regarded as a random series of 

 

Q

 

n

 

 structons with various

concentrations of bridging bonds (

 

1 

 

≤

 

 

 

n

 

 

 

≤

 

 4, 

 

Q

 

0

 

 corresponds to Si ). This approach makes it possible to esti-
mate the probability of formation of various ensembles of polymer species corresponding to the general formula

 

(

 

Si

 

i

 

O

 

3

 

i

 

 + 1 – 

 

j

 

)

 

2(

 

i

 

 + 1 – 

 

j

 

)–

 

, where 

 

i

 

 is the size of the ion, and 

 

j

 

 is the cyclization number of intrachain bonds. The
statistical model is utilized in the STRUCTON computer model, which makes use of the Monte Carlo method
and is intended for the calculation of the composition and proportions of polyanions at a specified degree of
polymerization of silicate melts (STRUCTON, version 1.2; 2007). Using this program, we simulated 1200
MMD for polyanions in the range of 

 

0.52 

 

≤

 

 

 

p

 

 

 

≤

 

 98

 

, where 

 

p

 

 is the fraction of nonbridging bonds in the silicon–
oxygen matrix. The average number of types of anions in this range was determined to increase from three

(Si

 

 

 

Si

 

2

 

 and Si

 

3

 

) to 153, and their average size increases from 1 to 7.2. A special option of the
STRUCTON program combines MMD reconstructions in silicate melts with the formalism of the Toop–Samis
model, which enables the calculation of the mole fraction of the O

 

2–

 

 ion relative to all anions in melts of spec-
ified composition. It is demonstrated that, with regard for the distribution and average size of anion complexes,
the concentration of the O

 

2–

 

 ion in the MeO

 

–

 

SiO

 

2

 

 system is characterized by two extrema: a minimum at 40–
45 mol % SiO

 

2

 

, which corresponds to the initial stages of the gelenization of the polycondensated silicate
matrix, and a maximum, which is predicted for the range of 60–80 mol % SiO

 

2

 

.
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METHODS FOR THE THERMODYNAMIC 
DESCRIPTION OF SILICATE MELTS

The two principal means for the selection of compo-
nents for describing the mixing properties of a silicate
liquid are as follows [10]. In the stoichiometric
approach, a solution is considered that corresponds to a
certain number of chemical compounds. The composi-
tions of the thermodynamic components and species
are thereby identical and can be written as simple (SiO

 

2

 

and MgO), multiple (Si

 

4

 

O

 

8

 

), or complex (CaSiO

 

3

 

 and
Mg

 

2

 

SiO

 

4

 

) oxides. This simplifies the formalism and
calibration of the mixing parameters of the oxide sys-
tems within the scope of the theory of regular solutions
(see, for example, [11]). This ideology was applied in
[12] to model magmatic melts based on multiple oxides
and compounds having the same chemical formulae as
minerals. The changes introduced with time into the
component basis of the MELTS program made it possi-
ble to somewhat expand the applicability field of this
model at preserving the principle of equal numbers of
components and species [4, 9].

An alternative approach, which is developed in the
chemistry of glass-forming melts, is underlain by so-
called speciation models, in which the existence of spe-
cies ensembles is admitted, with the numbers of these
ensembles greater than the number of the components
used to describe the chemical composition of the sys-
tem. In formulating such models, it is implied that sili-
cate complexes (molecular associates) can form in
melts, with these complexes occurring in reversible
chemical equilibria and being subject to the mass action
law. It is thereby necessary to evaluate the equilibrium
distribution of components in the melts, which further
complicates the description of the system by means of
the theory of associated solutions [13, 14]. These meth-
ods are well adjusted for the simulation of simple
alkali–silicate and silicate–borate systems [15, 16] and
binary and triple melts characterizing metal cinders (for
example, [17]).

The theory of associated solutions has not, however,
received wide recognition and application in the physi-
cal chemistry of magmatic processes. In their petrolog-
ical simulations, researchers mostly rely onto the afore-
mentioned semiempirical crystallization models in
which the melt is viewed as a mixture of arbitrarily
selected components, which do not, however, occur
among the actual species of the silicate melt, such as
SiO

 

2

 

 and NaAlO

 

2

 

 [5, 18, 19] or Fe

 

2

 

O

 

3

 

 and Na

 

2

 

SiO

 

3

 

 [4].
Obviously, the utilization of such molecular species
makes it difficult to apply the computer simulation
models to the whole compositional ranges of silicate
systems and the accurate enough reproduction of phase
relations, including liquid immiscibility in silica-rich
regions.

An alternative approach used in the thermodynam-
ics of magmatic melts is the application of ion–polymer
models, which take into account the dissociation of
oxides in melts

Me

 

n

 

O

 

 = 

 

n

 

Me

 

(2/

 

n

 

)+

 

 + 

 

O

 

2–

 

, (1)

 

and the possibility of polycondensation of silicon–oxy-
gen complexes with the origin of high-dimension
chain–ring structures
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– 1 + 

 

j

 

)

 

O
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, (2)

 

where 

 

i

 

 is the size of a polyanion (the number of Si
atoms in it), and 

 

j

 

 is the number of closures (cycliza-
tion) of its intrachain (cyclic) bonds [20]. These reac-
tions form chains (

 

j

 

 = 0) and a diversity of “ring” struc-
tures (

 

j

 

 

 

≥

 

 1

 

). Thus, each act of the polycondensation of
the chains and cyclization of the anions produces in
Si

 

−

 

O

 

0

 

–

 

Si bridging bonds (of a doubly bonded O

 

0

 

 atom)
and an O

 

2–

 

 ion from two end-positioned (singly bonded,
nonbridging) oxygen atoms

 

2

 

O

 

–

 

 = 

 

O

 

0

 

 + 

 

O

 

2–

 

. (3)

 

The forms of the reactions determined the differences
between the chemical (2) and quasichemical (3)
approaches to the description of the polycondensation
of silicate melts, but their shared feature is the assump-
tion of equilibrium between the finite number of poly-
mer species (nonbridging and bridging oxygen atoms)
and the low-molecular product, the O

 

2–

 

 ion. The con-
centration (activity) of free oxygen ions O

 

2–

 

 is an indi-
cator of the basicity of the melt [21] and is important for
the calculations of the activities of components for con-
structing melting [22, 23] and many other diagrams.

The amount of O

 

2–

 

 ions in systems of given compo-
sition is usually estimated from the mass and charge
balance, including nonbridging O

 

–

 

 and bridging O

 

0

 

atoms [24]. The proportions of these virtual atoms
defines the overall degree of polymerization of the sili-
con–oxygen matrix (the completeness of polyconden-
sation reactions), the statistical average proportions of
quasichemical structural units, and the probable size
distribution of the chemical complexes. Attempts to
calculate these distributions were undertaken with the
use of statistical modeling techniques [25–27] and
semiempirical models for anion equilibria that were
proposed to describe linear and branched chains
[28

 

−

 

30], predominant linear–ring structures [31], and
various complex compounds [32], including isomer
forms [20, 33, 34]. The problem of evaluating the rela-
tive concentrations of polymers (which is known in the
physical chemistry of polymers as the calculation of
molecular–mass distributions MMD) [35] is compli-
cated by the necessity for accounting for the gelization
of the silicate liquid, a process expected in Me

 

n

 

O

 

−

 

SiO

 

2

 

systems near metasilicate melts [36]. The gelization
process proceeds via forming infinite branched and
self-cycling polymer chains, which form an interrelated
framework of silicon–oxygen tetrahedrons with enrich-
ment in SiO

 

2

 

 (i.e., an increase in the O

 

0

 

/

 

O

 

–

 

 ratio).
Difficulties in describing such processes in molten

silicates were one of the main reasons why the theory
and calculations of polyanion equilibria are practically
not applied in the simulation of magmatic processes.
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The evaluation of MMD within broad ranges of SiO2
concentrations remained an unsolved problem [13] and
is much less popular than instrumental methods for
studying the structure of quenched glasses and melts
[37, 41]. Nevertheless, several researchers continue to
develop simulation techniques for polyanion equilibria
and the valuation of activities of free oxygen ions in
cinder-forming systems [23, 42–45]. The past years
witnessed attempts to apply these approaches in exper-
imental and theoretical petrology, including the
description of Fe3+/Fe2+ redox equilibria [46] and S sol-
ubility [47, 48] in silicate liquids. Potentiometric meth-
ods are developed in application to melts with the aim
of direct determination of the activity of the O2– ion and
the examination of its effect on the activity coefficients
of oxides of transition metals [49–52]. Interesting
attempts were undertaken to parameterize water solu-
bility depending on the experimentally measured con-
centration of free oxygen ions in binary cinders [45].

Obviously, more advanced ion-polymer models
may facilitate further progress in the description of
phase equilibrium and the properties of silicate melts
within broad compositional ranges typical of cinder-
forming and magmatic systems [53, 54]. This paper
represents a new approach to evaluating the MMD of
polymer complexes and simulating anion equilibria in
low and moderately polymerized melts (see also [55]).

MMD SIMULATIONS FOR SILICATE MELTS

In order to justify the proposed approach, it is expe-
dient to consider the basic principles used to describe
polymerized silicate melts. The process of melt poly-
condensation with the development of linear chains and
branched isomers is usually rendered as a succession of
reactions

 +  =  + O2–, (4‡)

 +  =  + O2–, (4b)

 +  =  + O2–, (4c)

or, in a more general form, as

 +  =  + O2–. (5)

Here the reactants and reaction products are silicate
complexes able to elongate the chains via forming
Si−O– bonds at nonbridging oxygen atoms, which com-

pose the  radical and are predominant among the
polyanions. The ability of the chains to form cycles (the
process of cyclization) is also predetermined by the
interaction of singly bound oxygen atoms within the
same chain anion [20, 34]

 =  + O2–. (6)

Table 1 lists some potentially possible polymer
species corresponding to general formula (2) for rela-

SiO4
4– SiO4

4– Si2O7
6–

Si2O7
6– SiO4

4– Si3O10
8–

Si3O10
8– SiO4

4– Si4O13
10–

SiiO3i 1+
2 i 1+( )– SiO4

4– Sii 1+ O3i 4+
2 i 2+( )–

SiO4
4–

SiiO3i 1+
2 i 1+( )– SiiO3i 1 j–+

2 i 1 j–+( )–

tively small anions with 1 ≤ i ≤ 10 and cyclization
index 0 ≤ j ≤ 7. Formally, this massif may be infinitely
extended, but the actual number of stable complexes is
finite, because cyclization is constrained to the maxi-
mum possible length of the chains, and the successive
increase in the size of the partly cyclized ring structures
results in a decrease in the overall amount of polymer
molecules. Furthermore, it should also be taken into
account that the sharing of an edge of two silicon–oxy-
gen tetrahedrons (i.e., connection via two pairs of end
bonds) or, particularly, the sharing of a face of two tet-
rahedrons, is hardly probable in polymerization reac-
tions [20, 32, 34]. This puts forth the problem of the
identification and calculation of the proportion of poly-
mers stable in silicate melts of given composition.

This problem should be successively solved
because, if the ensemble of polyanions is realistically
selected and their relative proportions are accurately
evaluated, the bulk of the free dissolution energy of the
melt may be attributed to the mechanical and configu-
ration mixing terms of silicate complexes. This makes
it possible to proceed from the terms of excess entropy
of mixing in the form of a product of the Margules
parameters (in models of regular solutions for “min-
eral-like” components, see above) to expressions
including the theoretically predicted or instrumentally
estimated mole fractions of species [10]. These models
are formulated with regard for the fact that the energy
threshold of cation substitution for anions is high, and
the probability of the random mixing of positively and
negatively charged ions is close to zero [27]. Hence, the
integral effect of the dissolution of oxides and devia-
tions from ideality in silicate melts can be described
with regard for the configuration effects of the “ideal”
mixing of ions in two independent matrixes: cationic
(modifiers) and anionic (network). This allows us to
utilize relatively simple expressions for the activities of
mineral-forming components in melts, which may be
evaluated within broad compositional ranges by the
method proposed for melts of ion salts [56].

For metal oxides in binary [24, 28, 26] and more
complicated [46, 47] melts, this approach leads to the
equations

(7)

 cations, (8‡)

 anions, (8b)

where   and  are the activities of oxide,

metal ion, and O2–, respectively, and , and  are

the concentrations of the metal ion among the cations
(Σ cations is the amount of positively charged ions) and
the O2– ion in the anion matrix (Σ anions is the sum of

aMeO
l a

Me2+
l a

O2–
l ,=

a
Me2+
l x

Me2+
l n

Me2+/Σ= =

a
O2–
l x

O2–
l n

O2–/Σ= =

aMeO
l , a

Me2+
l a

O2–
l

x
Me2+
l x

O2–
l
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negatively charged species), and  and  are the

amounts of the metal and free oxygen ions.
The expressions for the activities of silicate end

members acquire terms with the concentrations of sili-
con–oxygen species participating in the corresponding
mineral-forming reactions. For example, for Mg and Fe
orthosilicates (the Fo–Fa system), with regard for the
ionic nature and stoichiometry of the interacting com-
ponents [57, 58],

2Me2+ (l) +  (l) = Me2SiO4 (Ol in liquid) (9)

we obtain

(10)

where

 anions. (11)

It is easy to calculate the fraction of modifiers in the cat-
ion matrix, and the main problems encountered in the
application of relations (7)–(8) and (10)–(11) are the

evaluation of the O2– and  concentrations. Inas-
much as the monomer participates in polycondensation
reaction (2), the problem of summation of the amounts
of polyanions and free oxygen ions becomes crucial

Σ anions = ΣSi-anions + (12)

Esin’s models. In the late 1970s, this problem was
actively attacked by Esin [20, 33, 34, 59, 61], who
developed principles for the construction of an ion–
polymer model combining the statistical evaluation of
the isomer species for branched chains [29, 30] and
approaches to the description of ring complexes regard-
less of isomerization [32]. The model was underlain by
the calculation of the distribution of “all possible” poly-
merized anions by the modified Bernoulli equation [30]

xi, j = ωi, j(1 – p)(i –1 + j)p(2i + 1 – 2j)(1 – ), (13)

where xi, j is the mole fraction of an anion complex con-
sisting of i atoms of Si, which were formed by the poly-
condensaton of nonbridging bonds by reaction (5) and
include j intramolecular cyclized nonbridging bonds
according to reaction (6); ωi, j is a factorial term, which
is calculated by the formula

ωi, j = (3i – j)!/[(2i + 1 – 2j)!(i + j)!], (14)

1 – p is the probability of the formation of a bridging
bond, which is determined through the functionality of

monomer f (f = 4 for the  ion) and the parameter
α as

1 – p = 0.5αf/(f – 1)=2α/3, (15)

characterizing the progress of the polycondensation
reaction [30]

α = /(  + ), (16)

n
Me2+
l n

O2–
l

SiO4
4–

aOl
l a

Me2+
l( )2

aSiO4

l ,=

aSiO4

l xSiO4

l nSiO4
/Σ= =

SiO4
4–.

n
O2–.

x
O2–
l

SiO4
4–

2n
O0 2n

O0 n
O–

where  and  are the numbers of bridging and sin-

gle-bond oxygen atoms in one mole of the silicate melt.
These values are related to the molecular mass distribu-
tion (13) via the simple relations [20]:

 = ΣΣ(i – 1 + j)xi, j (ΣSi-anions + ) (17)

and

 = 2ΣΣ(i + 1 – j)xi, j (ΣSi-anions + ). (18)

Summation over i and j is conducted for linear and sta-
ble tridymite-like ring complexes (starting with
Si6  Table 1), whose possible ensemble is specified

by the equation for the minimum size of the anions imin
at a given j value [32]

j = imin + 1 – 1.71(imin)2/3. (19)

Supplementing these relations with constraints
imposed by the mass balance of the components and the
law of mass action for reaction (4a) forming the dimer,
Esin managed to close the system of equations
(13)−(19) and proposed an algorithm for its solution by
the method of successive iterations [20, 34]. The prin-
cipal difficulties encountered in the solution of this sys-
tem were related to the calculation of high-dimensional
factorials (14) and the necessity for summation in the
iteration cycles of the corresponding ΣΣxi, j =
ΣSi-anions, ΣΣixi, j, and ΣΣjxi, j series (17), (18). This
algorithm could first be utilized in the mid-1970s, when
BESM-6 computers appeared. Because of the signifi-
cant duration of the calculations for an “infinite”
ensemble of species (i  ∞, j  ∞), only a few
results were obtained that characterized the concentra-
tion of the O2– ion (MeO activity) at concentrations of
50 and 61 mol % SiO2 for the PbO–SiO2, MnO–SiO2,
FeO–SiO2, and SnO–SiO2 binary systems [60]. No
complete information on the MMD of the anions was
reported. The disadvantages of this approach are evi-
dently related to the rigidly specified selection of the
anion ensemble and the main postulate of the Masson–
Whiteway model, according to which, in constructing a
general polymerization scheme, one of the four non-

bridging bonds of the  monomer is recorded (see
comments in [14]). This condition predetermines the
further calculation of the probability of the formation of
polymer species of various geometry and size, and it
was proved inaccurate for silicate complexes [62].

Estimating MMD by the method of statistical
simulations. A more coherent approach that is inde-
pendent of the assumed polycondensdation scheme was
proposed in [25]. This approach is underlain by the pos-
tulate of a random distribution of end-positioned oxy-
gen atoms in a polymerized silicon–oxygen matrix.
This assumption largely follows from the concepts that
polymerization and/or polycondensation reactions (2)
characterize a dynamic equilibrium in which polymer
complexes are formed and decompose over a time span

n
O0 n

O–

n
O0 n

O2–

n
O– n

O2–

O18
12–,

SiO4
4–
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during which this equilibrium is reached [63]. Lacy
[25] was the first to estimate MMD in silicate melts
based on the probability of the formation of a bridging
bond, which was evaluated as 1 – p, where p is the aver-
age fraction of singly bonded oxygen atoms among the
four oxygen atoms coordinating one silicon atom

p = /(  + )=2(R – 2)/4, (20)

R = ΣO/Si is the oxygen/silicon ratio in the polymerized
matrix (ΣO =  + ).

The task of the calculation of the anion distribution
was thereby subdivided into two parts. First, the proba-
bility of the formation (relative concentration) of sili-
con tetrahedrons with 0, 1, 2, 3, and 4 bridging bonds
was calculated (they were later named Qn species, see
below)

(21)

where 0 ≤ n ≤ 4 is the number of the bridging bonds.
Such a Bernoulli distribution is based on the assump-
tion of the equal ability of end-positioned bonds in Q
monomers to participate in polycondensation reactions.
This approximation follows from the assumption that
the equilibrium constant of reaction (3) is independent
of the type of the Q species participating in the forma-
tion of chain and ring structures (5), (6). In fact, this
assumption is equivalent to the principle of equal reac-
tion ability of nonbridging oxygen atoms. Thus, Qn

structural units are considered to be “building blocks”
of real anion complexes, whose probability of forma-
tion (relative concentration) was calculated using the Pn
values (21) computed by a specialized algorithm and
with regard for the isomerization of the possible poly-
mers [25].

The concentrations of polyanions (including iso-
mers) were calculated by statistical methods. In this
model, the probability of the occurrence of species Q0

(the fraction of the  monomer among all Si
atoms) coincides with P0 and is equal to p4. The proba-
bility of the formation of the Si2  dimer is deter-

mined as the product of the probability P1 by the value
of P1/(1 – P0), which is the fraction of Q1 species among
all species with bridging bonds. Applying an analogous
logic, Lacy [25] derived analytical expressions and cal-
culated the probabilities of the formation of 300 iso-
mers for anion groups with no more than eight Si atoms
(1 ≤ i ≤ 8, Table 1). However, he failed to determine the
MMD of a silicate melt in the general form [25]
because of the practical impossibility of the analytical
description of the complete spectrum of isomer species
for polyanions with i ≥ 9 and the absence of suitable
computer equipment. Nevertheless, the approach
underlain by the use of Qn structural units as the basis
for simulating anion distributions seems to be construc-
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tive. It is thereby important that the distribution of Qn

species in a silicate melt can be evaluated from experi-
mental results [38, 39, 40, 64] or calculated theoreti-
cally with the use of empirical equilibrium constants of
polycondensastion reaction (3) [26, 27].

Distribution of Qn structons and the significance
of the Toop–Samis model. The term structon was pro-
posed to denote the minimum set of structural units suf-
ficient to compose polymer complexes of various sizes
[65]. Fraser [26, 27] extended this concept over silicon–
oxygen tetrahedrons with different proportions of end-
positioned O– and bridging O0 atoms and utilized pro-
portions of Qn quasispecies (Qn structons) in the ther-
modynamic description of the mixing properties of sil-
icate liquids. 1 Like in [25], he proposed to calculate the
relative concentrations of the five main structural units
by combinatorial expressions following from (20), (21)

 = P2 = 6p2(1 – p)2,  = P3 = 4p(1 – p)3, (22)

 = P4 = (1 – p)4,

in which all four Si–O bonds of the Q4 quasispecies are
bridging, and the ratio of bridging to nonbridging
bonds in the Q3, Q2, and Q1 structons are 3 : 1, 1 : 1, and
1 : 3, respectively. Quasispecies Q0 containing four
end-positioned O– atoms is the only structon of this
group coinciding with an anion actually present in the

polymerized matrix: the  monomer.

As can be easily seen in (22), the expected distribu-
tion of Qn structons as a function of p is symmetrical
(Fig. 1), thus highlighting the absence of an explicit
dependence on temperature or the composition of the
system. The proportions of quasispecies are determined
exclusively by the proportions of nonbridging and
bridging bonds, according to (20). The functional char-
acteristics of this ideal (stochastic) distribution of Qn

structons (Fig. 1) and the chemical composition of sili-
cate systems can be estimated by the method [22], see
formulations in [26, 27] for binary MeO–SiO2 systems.
In application to alkaline silicate and combined MeO–
Me2O–SiO2 systems, this approach implies the solution
of systems of equations including the balance of bridg-
ing and nonbridging bonds in Si–O tetrahedral

 =  + (23)

with the electrical neutrality of the system expressed as

(24)

1 Note that structons are understood in [46, 54] as a certain set of
anion species necessary to realize the thermodynamic model of
melt proposed by the authors. We will apply this term in its tradi-
tional formulation [25, 26, 27] and use the term Si anions when
speaking about polymer complexes (17)–(18).
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where  +  +  = 1 (in recalculation into

1 mole of the initial melt), and the expression for the
equilibrium constant of polycondensation reaction (3)

(25)

Solving the system of equations (23)–(25), one can
evaluate the concentration of oxygen quasispecies 

, and  in a binary and ternary silicate system

with various doubly and triply charged cations. The cal-
culated values of  and  are substituted into (20),

and this makes it possible to use (21), (22) to estimate
the proportions of Qn structons. Thereby the effects of
the silicity of the melt are taken into account via (23),
and the effect of the type (list) of cations is implicitly

accounted for through differences between  values
for various metals. As a result, the dependence of the

equilibrium constant  (25) on temperature and
composition determines the distribution of Qn structons
as an implicit function of these parameters.

Problem of the calibration and application of
polycondensation constants. The development of gen-
eralized models for polymer equilibria combining the
advantages of the chemical approach (5), (6) and the
relative simplicity of the Toop–Samis quasichemical
model (3), (23)–(25) depends on the possibility of cali-

bration of the equilibrium constants  for various
oxides. Polycondensation constants (25) are evaluated
by optimizing experimental data on the activity of MeO
and Me2O in silicate melts of various compositions.
The main criterion of the consistency of the theory and
experiment is the compatibility of the calculated mole
fractions of O2– with the established dependences of the
activity of oxides or the mixing entropy of melt compo-
nents on its composition. This method was applied to

derive the first estimates of   for binary MeO–SiO2

systems with Fe, Mn, Ca, Pb, and Zn oxides [24]. A
more comprehensive review of polycondensation con-
stants (with regard for alkali oxides) was given in [46].
Some difficulties are encountered when these values
are extrapolated to multicomponent systems because of
the necessity for the calculation of an “integral”

(weighted average) value of   in a cation matrix of
complex composition. The solution of this problem was
considered in [44, 46, 47], in which a semiempirical
method was proposed for the calculation of these con-
stants for multicomponent systems

 = exp[4.622(ΣxMeγMe + ΣxTγT) – 1.1445], (26)

where the fractions of metal cations (xMe) and tetrahe-
drally coordinated ions (Si4+, Al3+, referred to as xT) are
multiplied by the tabulated values for the basicity mod-
erating parameter γMe and γT for each cation. The basic
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information is thereby the values of   quantified for
binary systems. It is hard to assay the consistency of this
approach, particularly considering the fact that expres-
sion (26) disregards the temperature effect. However,
the efficiency of this approach was proved by the suc-
cessful description of the Fe oxidation state and S spe-
ciation in natural silicate melts [44, 48].

The theoretical approaches discussed above and
available empirical information on the equilibrium con-
stants of polycondensation reactions (3), (25), (26)
make it possible to relate the activity of free oxygen
ions and the degree of polymerization of the silicate
matrix (16), (20). This provides the basis for calculating
the distribution of Qn structons in “ternary”
MeO−Me2O–SiO2 systems depending on the melt com-
position (21), (22). This, in turn, makes it possible to
modify the approach [25] for the solution of the statis-
tical problem of the evaluation of the mass molecular
distributions with regard for the probability of the for-
mation of various polymer complexes. The technique
of the solution of this problem in the approximation of
the equal reaction ability of nonbridging bonds in Si–O
tetrahedrons was justified in [55] and is briefly
described below.

MONTE CARLO MODELING OF MMD

In the approach proposed here, a polymer complex
of any composition ((SiiO3i + 1 – j)2(i + 1 – j)–) (2) is regarded
as an ensemble of various Qn structons. If the general
distribution of Qn structons in the system is specified,
then the polymerized silicate matrix can be modeled as
an ensemble of various anions, i.e., diverse successions

Ke
TS

M
ol

e 
fr

ac
tio

n 
of

 Q
 s

tr
uc

to
ns

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
Fraction of nonbridging bonds (p)

1.0
0

0.2

0.4

0.6

1.0

0

0.8 Gelization region
at p < 0.5Q0

Q1

Q2

Q3

Q4

Fig. 1. Statistically expected distribution of Qn structons
depending on the fraction of nonbridging oxygen bonds p
(20) in the polymerized silicon–oxygen matrix.
Calculated by Eq. (22) in the approximation of the equal
reaction ability of nonbridging bonds. The gelization region
of the silicate matrix and the development of infinitely large
three-dimension “ring” complexes correspond to p < 0.5.
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of Si–O tetrahedrons with various proportions of non-
bridging and bridging bonds. The concentration of the
O2– ion is determined by the distribution function of Qn

structons and is independent of the processes forming
polymer complexes on their basis. This makes it possi-
ble to disregard the presence of free oxygen ions and
model the structure of the polycondensated system as a
result of successive interactions of Qn species.

Here we assume that the distribution of Qn structons
is specified by the Bernoulli formula (20)–(22)2.
Thereby one Si–O0–Si bond is formed by reaction (3)
at each modeling step as a result of interaction of struc-
tons. Obviously, the polymerizatrion of the Q1 species
can form only one bridging bond. This “potentially
bridging” bond will be referred to as saturated. The Q2,
Q3, and Q4 structons have two, three, and four unsatur-
ated bonds, respectively. According to the definition
formulated above, the polymerization of silicate melt is
a process of saturation (realization) of unsaturated
bonds. Hence, the formation of an ensemble of poly-
merized anions in melt can be modeled as the succes-
sive accumulation of polymers composed of structons
with unsaturated bridging bonds. The only species that
forms no bridging bonds is Q0, which is interpreted as

the  ion and is added to the modeled ensemble of
polyanions as an individual structural unit.

Modeling algorithm for the polycondensation of
silicate melt. Consider N initial “monomers,” which
are Qn species distributed according to formula (22).
Let us randomly select a succession of their participa-
tion in polymerization reactions. With a probability P0,
the first species to participate in them may be Q0. If the
first randomly selected monomer is Q0, then number of

the  species in the silicate melt is equal to 1. After
that, at each selection of the Q0 species, the number of

the  ions increases by one. If the first randomly
selected monomer is the structon Q1 (the probability of
this event is P1), then this potential polymer species is
unsaturated, and the selection of the monomer succes-
sion will be continued. Evidently, the saturation of the
bond of the structon Q1 selected at the first step will
continue only after the selection of a species having
unsaturated bonds. The probability of this event is
equal to (1 – P0), because the participation of monomer
Q0 in the reactions cannot result in the saturation of
bridging bonds, and the removal of this monomer from
the reaction is associated with an increase in the num-

ber of  ions in the silicate melt. Consequently, the

2 The utilization of the Bernoulli distribution, i.e., the assumption
of the principle of equal reaction ability, is not necessary for the
application of this approach, because the proposed algorithm and
modeling technique are independent of the distribution of Qn spe-
cies [55]. Our oncoming papers will present calculations with the
distributions of structons that were experimentally measured by
Raman and NMR spectroscopic methods.
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next monomer in the developing succession may be Q1.
The probability of this event for the second monomer in
the succession of reactants is P1/(1 – P0). In this situa-
tion, the unsaturated bridging bonds of two Q1 structons
are realized in the form of one saturated bond of the
Si2  dimer, which is a completed polymer chain and

is added to the ensemble of species of the modeled melt.

The probability of this event is equal to /(1– P0) and
coincides with that in Lacy’s (1965) method. After a
saturated dimer (or any other saturated polymer spe-
cies) is formed, the development of another polymer-
ization succession is initiated. If the second species to
participate in the polymerization succession is Q2, Q3,
or Q4, then the dimer resulting from the formation of a
single bridging bond will not be saturated (one, two, or
three unsaturated bonds remain), and the process form-
ing polymer will continue. However, if the second poly-
mer in this succession is the Q2 structon and the third
monomer will be Q1, then the trimer thus produced will
have no unsaturated bonds and should be interpreted as
the Si3  ion. The probability of formation of this ion

is equal to P2/(1 – P0)2.

The formation of polymers in this model is limited
by an important constraint: two monomers in a single
succession can be connected only through one bridging
bond. This constraint is equivalent to the impossibility
of “connecting” silicate tetrahedrons via an edge or
face, because the tetrahedrons can share only apexes.
This precludes, for example, the formation of cyclic
dimers composed of Q1 and Q2 (Si2 ) or two Q2

(Si2 ) species. Analogously, other metastable “ring”

structures, such as Si3 , and the Si4  tetramer are

excluded (Table 1). The minimal cyclic polymer that
can be produced in this situation is the Si3  ion,

which is made up of three Q2 structons. The probability
of formation of this trimer is made up in our model of
two events: (1) the formation of the saturated trimer
consisting of three Q2 species and having two unsatur-
ated bonds and (2) subsequent cyclization via the for-
mation of a bridging bond between the first and third
unsaturated monomers in the trimer. Evidently, the

probability of the former event is equal to /(1 – P0)2.
The further fate of the unsaturated trimer in our model
may be as follows: (1) either the connection with any of
the unsaturated Qn species (which remain in the reser-
voir of the possible reactants) or (2) cyclization, i.e., the
formation of a bridging bond between the first and third
monomers.

If the next monomer in our succession is Q1, i.e., a
species with one unsaturated bond, it can be connected
with an unsaturated trimer in two ways, according to
the number of unsaturated bonds of this trimer, and
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cyclization can proceed in only one manner (see
above). Under the assumption of the equal reaction
ability of unsaturated bonds, the probability of cycliza-
tion in the case of Q1 is equal to 1/3. In the case of Q2,
this probability is equal to 1/5, because two unsaturated
bonds of this structon have four possibilities of forming
a bridging bond with two unsaturated bonds in the trimer.
In the general case, if the unsaturated polymer has m
unsaturated bonds that can form k permitted bridging
bonds, the probability of the formation of a cyclic bond is

(27)

where Pc is the probability of cyclization. The more
systematic evaluation of the probability of formation of
a cyclic polymer (27) makes our probabilistic model
different from that in [25].

The proposed statistical model is thus reduced to the
random links of bridging bonds of various Qn structons
with the formation of polymer chains or cyclic com-
plexes. Each polymer succession develops until the
complete saturation of the bridging bonds of the newly
formed structure. The constraint imposed onto this pro-
cess is the connection of structon pairs by only one
bridging bond. For a polymer succession including
unsaturated monomers, the probability of self-cycliza-
tion is determined by Eq. (27), and the probability of
the continuation of the succession of Qn species (an
increase in the size of the polymer) is rendered by the
formula

(28)

where  is the probability of the continuation of the

succession with monomer Qn, and Pn is the fraction of
Qnstructons in system (20)–(22).

Computer implementation of the model. In order
to conduct calculations on the basis of the proposed sto-
chastic model, our earlier STRUCTON software pro-
gram package [55] was supplemented with a routine for
the calculation of the initial distribution of Qnstructons
by formulas (20)–(22). An MMD is modeled by this
program with a random-number generator (RNG) that
evenly covers the range of the number axis from 0 to 1.
RNG simulates discrete random value ξ, which
assumes values ξn + 1 (n + 1 = 1, 2,…, 5 according to the
number of structons Qn) with probabilities p1, p2, …, p5.
For this purpose, the whole [0, 1] interval is subdivided
into five segments, all of which having lengths pn + 1.
RNG yields a number between 0 and 1. Depending on
the segment into which the value falls, the random
value acquires a value ξn + 1. This simple procedure pro-
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vides the basis for the application of a method that is a
variant of the Monte Carlo technique.

The beginning of simulations by the STRUCTON
program involves specifying (or evaluating, see below)
the value of p, which characterizes the fraction of “non-
bridging” oxygen bonds (20), and determining the dis-
tribution of Qn structons by formulas (22). The deter-
mined probabilities Pn were utilized to realize the ran-
dom value of the outcome of Qn species (Fig. 2). If the
first structon turned out to be Q0, then the number of

 ions in the modeled melt was increased by one.
If an unsaturated species Qn appeared, then the number
of unsaturated bonds in the polymer chain was calcu-
lated, and the random value was generated, which
assumed one of the two values corresponding to
cyclization or the addition of another Qn monomer. The
corresponding probabilities are equal to k/(nm + k) for
the formation of a cycle and nm/(nm + k) for an increase
in the size of the polymer complex. During the next
stage, it was “determined” which pairs of unsaturated
bonds are cyclized in the polymer or with which of the
unsaturated bonds another Qn species was linked based
on the principle of equal reaction ability. Upon the sat-
uration of all bonds in the structon succession, i.e.,
when a given polyanion is completely formed, its com-
position (2), size, and charge were written into a file.
Correspondingly, the number of polymer species was
increased Np = Np + 1, and the number of Qn structons
in the initial reservoir was decreased by one N = N – 1.
The simulation of polymerization of a silicate matrix
was terminated when current value N = 0.

The simulation sequence presented above (Fig. 2)
characterizes one model calculation at p = const. With
regard for the probabilistic character of the model, such
calculations should be carried out a few dozen times
with the evaluation of the reproducibility and statistical
parameters of the calculated distributions at the same
starting conditions. For specified p values (20), we con-
ducted 50 such realizations. Taking into account that
each calculation involves N = 10000 initial monomers
Qn, the output of MMD modeling at a constant propor-
tion of bridging and nonbridging bonds can be regarded
as a result of calculations for 0.5 × 106 Qn structons.

MODELING RESULTS

The molecular-mass distributions were calculated
for the interval 0.52 ≤ p ≤ 98 (20) with a step ∆p = 0.02.
Thus, in the course of 24 × 50 = 1200 simulations, we
modeled a broad spectrum of the states of the polymer-

ized matrix, from the predominance of the 

monomer with a minor amount of the Si2  ion

almost to the gelization point at p = 0.50 (Fig. 1), at
which hundreds of Si–O species are present and the
anion complexes unrestrictedly increase. Table 2 and
Fig. 3, which are based on the results of the calculations
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at p = 0.60, illustrate the diversity and reproducibility of
the modeled ensembles and the relative concentrations of
the polyanions. These calculations model a moderate
degree of polymerization of the system α = 1 – p = 0.4
(16), in which ~13% of the original Qn structons is the

 ion, and the rest are grouped in complexes and
form, together with the  monomer, 2658 ± 40 spe-
cies on average from each 10000 original monomers.

Hence, the average mole fraction of the  ion among
the polyspecies is close to 0.5 (~0.13 × 10000/2658), and

SiO4
4–,

SiO4
4–

SiO4
4–

the other linear and “ring” structures display a decrease
in the concentration with increasing size of polyanions
i and the cyclization number j. It is worth noting that
this decrease is monotonous for linear structures (j = 0)
but shows maxima on the distribution lines for ring
complexes (j ≥ 1).

Our MMD simulations testify that the stability of
the solution of the problem for a given number of orig-
inal Q monomers depends on the fraction of polymer-
ized species. At concentrations lower than 0.1% (as is
typical of species with the number of cyclized bonds

Random “production” of a Qn-species of 
N-monomers by the random-number

generator (RNG)

Composing a polyanion ensemble Np = Np + 1

Analysis of the polymer chain: calculation
of the number of unsaturated bonds, identification of cycle-forming 

pairs of unsaturated bonds, and the calculation of the number of cyclizations

If all bonds are saturated If unsaturated bonds remain

N = N – 1

Selection of an unsaturated bond in
polymer for the attachment of another

monomer with the use of an RNG

Selection of a pair of unsaturated bonds
in polymer for the development

of a cycle with the use of an RNG

Attaching of a monomer Development of a cycle

Increase of the polymer complex or cyclization:
selection with the use of an RNG by (27. 28)

Analysis of the type of the species and distinguishing Q0structons

If Q0 If Q1-, Q2-, Q3-< or Q4-species

Initial state of the system
N = 10000 – total number of monomers

Np = 0 – number of polyanions

Calculation of the probability Pn
of the formation (mole fraction)

of Qn-species by (22)

Fig. 2. Control-flow diagram of the STRUCTON software program package developed to simulate molecular-mass distributions of
polyanions on the basis of the distribution of Qn structons in silicate melt [55].
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j ≥ 3), the number of ring complexes shows “peak” dis-
tributions (Fig. 3). A measure of the “stability” of the
modeled ensembles may be the dispersion of the poly-
mer concentrations expressed as the standard deviation
(1σ) evaluated for each type of the species from the
results of 50 calculations and normalized to the corre-
sponding mole fraction (Table 2). The table lists
166 linear and ring structures, whose appearance in this
calculation series was detected at least four times. For
the predominant low-molecular species (i ≤ 8, j ≤ 1), the
standard deviations of the calculated values do not
exceed 20%. High-molecular complexes with 8 ≤ i ≤ 20
show reproducibility within 100–300%, but this pertains
to species whose concentrations are no higher than 0.01–
0.1 mol %. Note that the 166 species and single com-
plexes with 41 ≤ i ≤ 93 (Table 2) comprise the whole
diversity of the polymers obtained in our simulations for
500000 species. It can never be realized in practical cal-
culations of a single polymerization succession for N =
10000. The average number of polymer types obtained
in 50 simulations at p = 0.60 is 92.2 ± 4.4.

Another important observation, which follows from
the analysis of the structure of data from Table 2, per-
tains to the finiteness of the anion ensemble. This is
manifested in the limited length of the chains (i ≤ 25)
and the size of the ring complexes, which are reduced
polymer successions that shorten with progress in
cyclization j. It was mentioned above that the main rea-
son for the limited maximum size of the chain anions is
the self-cyclization of end-positioned oxygen atoms,
whereas the factor “hampering” cyclization (particu-
larly for small species) is caused by the “prohibited”
sharing of edges and faces of Si–O tetrahedrons. Figure
4 displays a systematic increase in the average number
of Si–O complexes of various types and a decrease in
the overall number of polyspecies in the system as p is
changed from 0.98 to 0.52. These results are obviously
different from those in [25]. The assessment of the
potential set of the polyanions by the STRUCTON pro-
gram package implicitly allows the presence of isomer
complexes [through the calculation of the average con-
centrations of polymers of certain composition (2),
regardless of their geometry (set of Qn structons)].
Lacy’s [25] results provide an estimate for the probable
concentration of each type of species of the same com-
position but different configuration in relation to the
loci where bridging bonds are formed in the polymer
“chain.” Because of this, our calculations never yield
more than four types of species including eight Si
atoms (i = 8), whereas more than 160 structural units
was proposed for similar compositions in [25].

The deliberate limitation of the “configurational
constituent” in our model is not of principal character
and does not effect the calculation of the overall num-
ber of anions (12) and the concentrations of the pre-
dominant small-sized species (Fig. 3). Moreover, it
seems to be convenient for the further analysis of the
results of the statistical simulations to even more
“reduce” the obtained information using Esin’s method

[20, 34]. This approach involves the summation of
polyanion concentrations in a succession correspond-
ing to the same degree of cyclization j (see columns in
Table 2). This makes it easier to compare the calcula-
tion results for different p values or complimentary
degree of polymerization α (Table 3). Figure 5a shows
the distributions of the four predominant polyspecies

(the  monomer, Si2  dimer, Si3  linear tri-

mer, and Si3  ring trimer), whose aggregate concen-

trations vary from 99.99% at p = 0.98 to 62.52% at p =
0.52. Figure 5b characterizes the integral distributions

and presents data (along those for ) on the rela-
tive proportions of the whole set of the chain anions (i
> 1), singly cyclized ring structures (j = 1), and three-
dimension complexes (j ≥ 2) corresponding to general
formula (2).

In the case of the monomer, the concentrations sys-
tematically decrease within the range of 0.98 ≤ p ≤ 0.58,
and the mole fraction of the  ion increases at a
further increase in the degree of polymerization of the
system. This causes the fast decrease in the overall
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Fig. 3. Molecular-mass distribution of chain (j = 0) and
“ring” (1 ≤ j ≤ 4) complexes, calculated by the STRUCTON
software program package according to the results of
50 simulations at p = 0.60.
The mole fractions and their dispersions are reported in
Table 2. The complete anion ensemble includes 2658 ±
40 polymerized species on average (of 10000 initial Qn

structons), which represent approximately 200 various
complexes having a size of 1 ≤ i ≤ 93. The presence of iso-
mers is implicitly taken into account as the calculation
result of the average concentration of polymers of certain
composition (2) regardless of their geometry.

j = 0
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Table 2.  Mole fractions and dispersions of concentrations of polyanions for chain (j = 0) and ring (j ≥ 1) complexes calculated
based on the results of 50 simulations for p = 0.60

Anion size, 
i

Number of closures (cyclizations) of intramolecular bonds,  j

j = 0 (×10–2) j = 1 (×10–2) j = 2 (×10–3) j = 3 (×10–4) j = 4 (×10–4) j = 5 (×10–5) j = 6 (×10–5)

1 48.54 (1.5) – – – – – –

2 9.71 (5.8) – – – – – –

3 6.60 (7.7) 1.05 (14) – – – – –

4 5.00 (8.6) 1.64 (15) 1.13 (56) – – – –

5 3.60 (9.7) 1.53 (14) 1.69 (45) 0.52 (247) – – –

6 2.60 (12) 1.41 (14) 2.22 (41) 1.28 (200) – – –

7 1.86 (15) 1.23 (19) 2.49 (31) 2.02 (124) – – –

8 1.33 (16) 1.03 (18) 2.81 (33) 3.23 (98) 3.1 (339) – –

9 0.955 (20) 0.894 (19) 2.96 (41) 4.43 (74) 3.0 (339) – –

10 0.666 (24) 0.762 (24) 2.63 (36) 5.58 (97) 3.8 (300) – –

11 0.468 (33) 0.580 (23) 2.63 (30) 6.07 (88) 9.8 (185) – –

12 0.308 (33) 0.483 (25) 2.37 (38) 6.63 (65) 5.3 (286) – –

13 0.229 (37) 0.398 (23) 2.13 (41) 7.59 (60) 6.0 (229) – –

14 0.165 (49) 0.314 (34) 1.77 (37) 6.63 (77) 19.5 (134) – –

15 0.131 (47) 0.214 (46) 1.80 (51) 6.69 (64) 8.3 (208) – –

16 0.082 (58) 0.202 (42) 1.54 (53) 5.95 (62) 11.2 (152) 3.1 (339) –

17 0.058 (89) 0.151 (52) 1.27 (59) 5.87 (57) 12.8 (151) – –

18 0.040 (106) 0.111 (50) 1.22 (53) 6.46 (72) 17.4 (146) 3.8 (300) –

19 0.033 (115) 0.082 (62) 0.935 (56) 4.59 (89) 26.3 (103) – –

20 0.021 (130) 0.057 (75) 0.858 (81) 4.75 (82) 14.4 (166) 5.2 (247) –

21 0.014 (138) 0.047 (88) 0.588 (96) 4.60 (79) 18.0 (181) 6.0 (260) –

22 0.019 (128) 0.032 (111) 0.452 (79) 4.21 (86) 16.5 (158) 5.3 (247) –

23 0.009 (197) 0.032 (129) 0.368 (102) 3.77 (113) 9.8 (185) 3.8 (300) –

24 0.007 (265) 0.024 (123) 0.376 (85) 3.39 (102) 16.5 (164) 4.6 (270) –

25 0.003 (339) 0.014 (156) 0.263 (128) 2.41 (128) 10.5 (202) 6.0 (261) –

26 – 0.013 (182) 0.196 (139) 3.24 (114) 15.0 (149) – –

27 – 0.009 (199) 0.157 (135) 2.03 (148) 5.40 (247) 6.7 (300) –

28 – 0.009 (196) 0.173 (131) 1.66 (137) 10.5 (175) 3.0 (339) –

29 – 0.004 (270) 0.144 (174) 1.36 (174) 8.3 (188) – –

30 – 0.003 (339) 0.068 (240) 0.60 (229) 6.8 (213) 4.5 (270) –

31 – 0.004 (270) 0.053 (348) 0.76 (200) 5.3 (352) 3.7 (300) –

32 – – 0.053 (247) 0.38 (300) 10.5 (160) 5.2 (247) –

33 – – 0.053 (284) 0.52 (285) 4.5 (270) 6.0 (229) –

34 – – 0.053 (247) 0.30 (339) 3.8 (300) – 3.8 (300)

35 – – – 0.45 (270) 4.5 (270) 3.0 (339) 3.0 (339)

36 – – – 0.67 (240) 3.0 (339) – –

37 – – – 0.38 (300) 3.7 (300) – –

38 – – – – – – –

39 – – – – 3.1 (339) – –

40 – – – – 3.7 (300) – –

Note: dispersion is the standard deviation (1σ) expressed in % of the mole concentration. The table reports 166 complexes whose appearance in a
series of 50 simulations was noted at least four times. Single (usually one or two) complexes of size 41 ≤ i ≤ 93 amount to no more than 0.04%
of the average amount of polymerized species (2658 ± 40).
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number of polymer species because of an increase in
their size (see Table 3). An increase in the concentra-
tions of small species (including the O2– ion, see below)
relative to high-molecular complexes is a distinctive
feature of ion–polymer models [13, 20]. The distribu-
tion of the total concentration of linear polymers (j = 0)
and ring complexes of various types exhibits relative
maxima (Fig. 5b), whose mode pj shifts with decreasing
p: p0 ≥ p1 ≥ p2 … ≥ pJ j (where J is the maximum possi-
ble number of cyclizations of nonbridging O– bonds at
a given degree of polymerization). Note that, in spite of
a decrease in the concentration of complexes of certain
type, the fraction of small species of this cluster may
increase, as took place for the Si2  ion (Fig. 5a) in

the general massif of chain polymers (Fig. 5b).
Evaluation of the concentrations of the O2– ion.

The solution of the problem of MMD modeling for Si
anions in a polymerized silicate matrix makes it possi-
ble to calculate the fraction of the O2– ion (8b) with
respect to the total amount of anions (12) in
MeO−Me2O–SiO2 systems of given composition. This
problem can be solved as follows.

(I) First, the number of virtual atoms (  and )

and ions of free oxygen are calculated for 1 mole of

melt at given   values by Eqs. (23)–(25) (examples

of these estimates for   = 0.001 and 0.1 are shown

in Fig. 6). Using  and and Eq. (20), the weighted

mean fraction of nonbridging oxygen bonds p in the sil-
icate matrix is calculated.

(II) Then MMD is modeled for a given p and the
amount of polymerized species in the system ΣSi-anions
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is calculated (12). For this Bernoulli distribution of Qn

structons, such estimates can be obtained using approx-
imations for the average amount of polymers Np among
10000 modeled species: Np = f(p)  Xp = 10−4Np 
ΣSi-anions = XpNSi, where NSi is the amount of Si atoms
in one mole of the original melt, and f(p) is a derivative
function selected for the description of the established
dependence of Np on p (Fig. 4). It is, however, more
convenient in practice to conduct calculations with
another important parameter, characterizing the aver-
age size of the Si-anion, iav. This parameter is calculated
from the results of modeling by the STRUCTON pro-
gram at each p value (Table 3), and its dependence on
the fraction of nonbridging bonds is accurately enough
approximated by a sixth-degree polynomial (Fig. 7).
Because, by definition, the value of iav is the weighted
mean (with regard for mole fractions) size of polymers,

ΣSi-anions = NSi/iav. (29)
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Fig. 4. Dependence of the average number of silicon–oxy-
gen compositions of various types and the overall amount of
polyanions on the relative fraction of nonbridging oxygen
bonds p (20) in the silicate matrix.
Calculated by the STRUCTON software program package.
Averaging at specified p = const was conducted based on the
results of 50 simulations for 10000 original Qn species. The
reported errors correspond to the ±1σ interval.
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(III). The values of NSi/iav and  are substituted

into (12) and are utilized to calculate the concentration
of the free oxygen ion O2– in system (8b)

(30)

In Fig. 8, the compositional dependences of the con-
centration of the free oxygen ion O2– calculated for
MeO–SiO2 systems in the quasichemical model
approximation ([O2–], see [24]) are compared with cal-
culations by (30) with regard for the average size of
anions in the ion–polymer model (STRUCTON soft-
ware program package [55]). The calculations were
carried out for five   values that were varied from
10–5 to 10–1. The calculation results for the range of
0.52 ≤ p ≤ 98 (20) in the right-hand plot in Fig. 8 (solid
lines) were appended with an extrapolation to more
silicic and polymerized compositions (dashed lines)
conducted with the use of a polynomial dependence of
iav on p (Fig. 7).

n
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These comparisons allowed us to formulate the fol-
lowing conclusions. First of all, it is worth mentioning
that, in spite of the identical expressions for the poly-
condensation constant (25), this parameter character-
izes two principally different thermodynamic models.
In the Toop–Samis approach, O2– ions are mixed in a
virtual matrix of oxygen atoms (Fig. 6), whereas the
ion–polymer model implies the mixing of this low-
molecular product of reactions (5), (6) with the real

species of the Si–O matrix: the  Si2  Si3 ,

and other ions. Because of this, equal   values result
in different concentrations of “free oxygen” (Fig. 8).
These differences between the quasichemical and
chemical models predetermine the interpretation of
another important observation. The classic successions
of [O2–] values in the model [24] display a monotonous
decrease in the corresponding concentrations with
increasing SiO2 concentration (Fig. 8, left-hand plot),
whereas simulations by the ion–polymer model suggest
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Table 3.  Comparison of MMD modeling at p = 0.54 and p = 0.60

For nonbridging bonds p = 0.54 For nonbridging bonds p = 0.60

Species Number X (mol) Av. charge Av. siz Species Number X (mol) Av. charge Av. siz

SiO4 841 0.47541 –4.0 1.00 SiO4 1250 0.47295 –4.0 1.000

Chains Chains

Si2O7 175 0.09893 – – Si2O7 262 0.09913 – –

Si3O10 106 0.05992 – – Si3O10 203 0.07681 – –

Total 503 0.28434  –10.6  4.27 Total 906 0.34279 –10.8 4.40

Rings Rings

Si3O9 16 0.00904 – – Si3O9 32 0.01211 – –

J = 1 215 0.12154 –18.0 9.01 J = 1 357 0.13507 –16.1 8.04

J = 2 99 0.05596 –24.4 13.20 J = 2 84 0.03178 –22.0 12.01

J = 3 45 0.02544 –35.4 19.69 J = 3 35 0.01324 –30.6 17.31

J = 4 27 0.01526 –59.8 32.89 J = 4 7 0.00265 –40.6 23.29

J = 5 8 0.00452 –55.3 31.63 J = 5 2 0.00076 –34.0 21.00

J = 6 8 0.00452 –72.8 41.38 J = 6 1 0.00038 –58.0 34.00

J = 7 7 0.00396 –59.1 35.57 J = 7 1 0.00038 –72.0 42.00

J = 8 5 0.00283 –94.4 54.20 J = 8 – – – –

J = 9 5 0.00283 –118.4 67.20 J = 9 – – – –

J = 10 1 0.00057 –176.0 97.00 J = 10 – – – –

J = 11 – – – – J = 11 – – – –

J = 12 3 0.00170 –172.7 97.33 J = 12 – – – –

J = 13 – – – – J = 13 – – – –

J = 14 2 0.00113 –137.0 81.50 J = 14 – – – –

Total 1769 1.00000 –12.2 5.65 Total 2643 1.00000 –9.1 3.78

Note: in the calculations at p = 0.54, the appearance of six species of average size i about 97 and 87, a number of cyclization j from 10 to
14, testifies that the gelization point is approached, at which an unlimited increase in the polymerization successions takes place.
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the existence of a relative minimum in the concentra-
tion  at 40–45 mol % SiO2. The position of this
minimum is consistent with predictions based on the
polymer theory, which predicts that the starting geliza-
tion point of silicate liquid and a drastic decrease in the
number of polymer species occur at a SiO2 concentra-
tion equal to 3/7, i.e., close to 43 mol % [28, 36].

Although the third conclusion is based on extrapola-
tion results to more silicic compositions, it seems to be
valid. The fact is that, because of the monotonous
decrease in the number of free oxygen ions in the sys-
tem (Fig. 6, ), both of the thermodynamic models

must yield zero concentrations [O2–] and  for pure
SiO2. With regard for the aforementioned  mini-
mum in the ion–polymer model, this implies the exist-
ence of another concentration extremum: a relative 
maximum at 60–80 mol % SiO2. This conclusion is cor-
roborated by our extrapolations (dashed line in Fig. 8).
Obviously, the occurrence of such extrema in silicate
systems is predetermined by the principal form of
dependences (30) and the average size of the polyan-
ions on the composition and are independent of the
accuracy of the iav extrapolation (Fig. 7). We attract
attention to this conclusion for two reasons. First, the
expected position of concentration maxima for  in
MeO–SiO2 systems falls into the liquid miscibility gap
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of silicate melt (see review in [14]). Thus, the occur-
rence of concentration maxima for free oxygen ions [or
the activity of MeO (7)] implies the extremal behavior
of the thermodynamic functions of mixing for the com-
ponents of the polycondensated matrix and the princi-
pal possibility of a systematic description of immisci-
bility in silicate melts. Second, the formalism of the
mathematical description of such minima and maxima
can be applied in interpretations of the extremal solu-
bility of oxides of transition metals (Fe, Ni, Co, and
Cr), a phenomenon discovered in simple aluminosili-
cate systems at SiO2 concentrations of 57 ± 2 mol %
[66–68].

CONCLUSIONS

(1) A new statistical model is considered in applica-
tion to the equilibrium structure (molecular–mass dis-
tribution, MMD) and the composition of polyanion
complexes at a given distribution of Qn structons in sil-
icate melts [55]. The model is based on the representa-
tion of polymers in the form of a succession of Qn spe-
cies with various numbers of bridging bonds (1 ≤ n ≤ 4).
The anion matrix is thereby described as a diversity of
chains and cyclic complexes corresponding to the gen-
eral formula ((SiiO3i + 1 – j)2(i + 1 – j)–), where i is the num-

ber of Si atoms, and j is the number of self-cyclized
bridging bonds in a given polymer. It was demonstrated
that an ensemble of such Si–O species can be simulated
by the Monte Carlo technique based on the known dis-
tribution of Qn structons in silicate melt. This makes it
possible to estimate the average size of the polyanions
with regard for the constraints imposed onto the link-
age of randomly selected structons via a single bridg-
ing Si−O0–Si bond. The model is utilized in the
STRUCTON software program package designed for
simulating the composition and proportions of polyan-
ions in silicate melts at a given degree of their polymer-
ization. The original code [55] is supplemented with a
routine for the calculation of the random distribution of
Qn structons in the approximation of equal reaction
ability of nonbridging bonds (version 1.2, 2007).

(2) The STRUCTON-1.2 program package was
used to model the MMD of polyanions in the interval
0.52 ≤ p ≤ 98, where p is the fraction of nonbridging
bonds in the Si–O matrix. Each calculation was carried
out for N = 10000 of initial Qn monomers, and the spec-
ified p values corresponded to a series of 50 calcula-
tions. This allowed us to evaluate the reproducibility
and statistical parameters of the calculated MMD
within broad ranges of states of the polymerized
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matrix, from the predominance of the  monomer

and a minor amount of the Si2  ion to the gelization

point, which is marked by an unlimited increase in the
anion complexes. The calculation results yielded the
mole fractions of individual anions and cyclic groups,
which are combined according to the equal number of
cyclized end-positioned bonds [20, 34]. It was deter-
mined that the average amount of silicate complexes (of
104 original monomers) systematically decreases from
9480 at p = 0.98 to 1390 at p = 0.52, and the average
number of their types simultaneously increases from

three (  Si2 , and Si3 ) to 153. It was dem-

onstrated that chain anions of size i ≥ 25–28 do not
form even in the most polymerized matrix, and the fac-
tor limiting their increase is cyclization, a process
related to the closure of bridging bonds. The average
size of the polyanions iav in this range of p increases
from 1 to 7.2.

(3) One option of the STRUCTON software pro-
gram package combines the simulation of MMD in sil-
icate melts with the formalism of the theory [24] for
MeO–Me2O–SiO2 systems. This enables the simulation
of the mole fraction of the O2– ion relative to the overall
amount of anions in melts of specified composition at cer-
tain values of the polymerization constant (20, 23–35, 30).

For five values 10–5 ≤   ≤ 10–1, we compared the
dependences of the O2– concentration on the SiO2 con-
centration, which were calculated for MeO–SiO2 sys-
tems in the approximation of the Toop–Samis qua-
sichemical approach and the presented ion–polymer
model. It is demonstrated that, taking into account the
distribution and average size of the polymerized com-
plexes, results in two extrema in the O2– concentration.
One of them is a relative minimum at 40–45 mol %
SiO2 and corresponds to the initial gelization stages of
the polycondensated silicate matrix. The other one is a
maximum of  which is predicted for SiO2 concen-

trations of 60–80 mol %.
The results of MMD simulations presented in this

publication and the interpretation of the O2– concentra-

tion as the activity of metal oxides  propose a nat-
ural avenue for the further development of the theory of
silicate melts, which combines the capability of the
ion–polymer model and some propositions of the the-
ory of associated solutions. The further development of
statistical modeling techniques in application to silicate
melts involves accounting for the presence of alumino-
oxygen species and the examination of the effect of vol-
atile components (H2O and CO2) on the degree of poly-
merization of the Si–O matrix. An important element of
these models is the possibility of taking into consider-
ation disproportionation reactions and the unequal
reaction ability of Qn structons of different types. These
approaches have a great potential for the development
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of a new class of realistic and consistent models for the
crystallization and melting in magmatic and metallurgi-
cal systems.
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